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6.1 Introduction
Clostridium perfringens is a spore-forming foodborne human pathogen that
frequently complicates the safety of ready-to-eat (RTE) meat and poultry
products. This microorganism is ubiquitously distributed in the envi-
ronment, including soil, water, air, and intestinal tracts of many warm-
blooded animals and humans (Brynestad and Granum, 2002; Juneja et al.,
2001). As a spore former, this organism can survive relatively harsh envi-
ronmental conditions and enter raw foods in the form of spores. As a
result, raw materials used in preparing RTE meat and poultry products
may be natural carriers of C. perfringens spores.

C. perfringens is a typical Gram-positive, anaerobic bacterium that
thrives particularly well under conditions where oxygen is absent or the
level is low. Cooking of meat and poultry products may create a condi-
tion that allows this microorganism to grow and multiply. Under normal
cooking conditions, a thermal treatment process is usually designed to
induce certain physical and chemical changes in RTE meats. Vegetative
cells of common foodborne pathogens, such as Listeria inonocytogenes,
Salmonella spp., and Esclierichia coli 0157:H7, along with other spoilage
microorganisms, are generally eliminated in the cooking step. However,
the temperature conditions used in the cooking step are often insufficient
to kill spores of C. perfringens. Instead, the spores may be activated dur-
ing cooking. Since cooking expels oxygen from the food and eliminates
background flora, the spores may germinate, outgrow, and multiply dur-
ing cooling.

Under anaerobic conditions, germinated C. perfringens can grow rap-
idly at temperatures between 30°C and 47°C, a range of temperature that
spores are exposed to during cooling (Craven, 1980). According to the
literature, the optimum growth temperature for this microorganism is
between 43°C and 47°C (Hall and Angelotti, 1965).

Cooling of cooked products is a critical step to prevent the germina-
tion, outgrowth, and multiplication of C. perfringens in cooked meats. As
cooked products are cooled from their final cooking temperature to their
final storage temperature, they are exposed to temperatures between
50°C and 10°C, a range suitable for the growth of this organism. At the
Optimum temperatures, the generation time can be as short as 7.1 ruin in
cooked ground beef (Willardsen et al., 1979). Due to the high growth rate
of C. perfringens at optimum temperatures, rapid cooling is essential to
prevent outbreaks caused by cooked meats. Because of the importance of
cooling in preventing the growth of C. perfringens, the U.S. Department of
Agriculture (USDA) Food Safety and Inspection Service (FSIS) has issued
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guidelines that require the internal temperature of cooked meats during
a cooling process be reduced from 54.4°C (130°F) to 26.7°C (80°F) in less
than 1.5 h, and from 26.7°C to 4.4°C (40°F) in less than 5 h. If a meat pro-
cessor cannot meet this "safe harbor," it is necessary to show that the cus-
tom cooling regimen (or in the case of a process deviation) would result
in less than a I-log increase in C. perfringens and no growth of Clostridium
hot ulinum. In the event of process deviation, mathematical growth models
can he used to assess the extent of C. perfringens growth and evaluate the
safety of the implicated meat product. To estimate the potential growth of
Clostridia in cooked or partially cooked meat products, it is necessary to
understand the growth kinetics of microorganisms and develop mathe-
matical models that accurately describe the microbial growth behaviors.

6.2 Models and methods for microbial growth
under isothermal conditions

The growth of bacteria in foods usually follows a sigmoidal trend and is
affected by both intrinsic and extrinsic conditions. Examples of extrinsic
conditions include temperature and time, which defines the temperature
history of a food. Intrinsic conditions are the physical and chemical prop-
erties of a food, which may include pH, salt level, and the existence and
concentration of antimicrobial agents. Under normal conditions, bacterial
growth typically exhibits three sequentially progressing phases. The first
phase is the lag phase, during which no apparent change in the counts of
bacteria can be observed. The second phase is the exponential phase, dur-
ing which the number of bacteria increases exponentially. The last phase
is the stationary phase, in which the number of bacteria reaches the maxi-
mum. The duration of the lag phase (X) and the bacterial growth rate (K)

in the exponential phase are affected primarily by temperature, but they
also are influenced by many intrinsic conditions.

To estimate bacterial growth, a model must be able to describe these
three distinct phases. A primary model is a mathematical model capable
of describing the three-phase time-dependent growth curve under con-
stant temperature conditions. Since X and K are affected by temperature,
a secondary model is developed to describe the effect of temperature on
these two parameters. A tertiary model is a mathematical model that cor-
relates kinetic parameters (X and K) to both intrinsic and extrinsic factors,
such as temperature, pH, salt concentration, water activity, and other rel-
evant ingredients. The combined application of the models of different
levels makes it possible to estimate the growth of microorganisms under
static or dynamic conditions.
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Figure 6.1 A hypothetical isothermal growth curve with three distinctive growth
phases (initial cell concentration = 2.5 logs, lag phase 2.5, specific growth rate =
1.0 log per unit time, final cell concentration = 9.0 logs).

6.2.1 Primary models

The primary models are the basic block for predictive microbiology.
Models at the primary level are designed to describe the growth of
the microorganism as a function of time under isothermal conditions.
Figure 6.1 illustrates a hypothetical growth curve with the three-phase
growth phenomenon of microorganisms under isothermal conditions.
A primary model must be a smooth curve that gradually progresses
from the lag phase, through the exponential phase, and to the final sta-
tionary phase.

6.2.1.1 Empirical models
Primary models of different complexity have been developed and used
in estimating the microbial growth. The simplest models are empirical
models such as those modified from the original Gompertz and logistic
equations. Both modified Gompertz and logistic models use a transition
function that allows the curves to gradually progress from the lag phase
to the stationary phase. For both modified Gompertz and logistic models,
the general mathematical equation is expressed as

L (t) = Lmax +(Lmax_ L)S(t)	 Eq. 6.1
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In Eq. 6.1, L(t) is the logarithm (base 10) of the counts of microorgan-
isms at any given time t; L max is the logarithm of the maximum counts of
microorganisms; L0 is the logarithm of the initial counts; and S(t) is the
sigmoidal function, which is written as

exp {_exp[—i.t (t - M)]}	 Coinpert:

-	 Logistic	
Eq.6.2

1+exp[—ii(t—M)]

In Eq. 6.2, M is the inflection point of a growth curve, and p is the rela-
tive rate constant at t = M, which is the point of the curve where the maxi-
mum slope is located. From Eqs. 6.1 and 6.2, two of the most important
growth parameters can be derived. The first parameter is the duration of a
lag phase () under an isothermal condition, which can be calculated from

M -
	 Gom pert:	

Eq. 6.3
Logistics

The other parameter is the specific or exponential growth rate, K,
which is located at the point where t = M, and can be calculated from

F	
-	 Compertz	

Eq. 6.4K =

	
e - L0	

LogisticLmax

4

Although slightly different in mathematical characteristics, both
modified Gompertz and logistic models can adequately describe micro-
bial growth under isothermal conditions. Figure 6.2 illustrates the com-
parison between the modified Gompertz and logistic models used to fit
the same hypothetical growth curve shown in Figure 6.1. Table 6.1 lists the
growth parameters estimated using these two models. It is evident that
the specific growth rates and the lag phases are slightly overestimated
by the modified Gompertz and logistics models. The major difference
between the modified Gompertz model and the modified logistic model
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Figure 6.2 Comparison between Gornpertz and logistic models used to fit the
hypothetical growth curve shown in Figure 6.1.

Table 6.1 Growth Parameters Calculated
from the Modified Gompertz and Logistic Models
Used to Fit the Growth Curve Shown in Figure 6.1

Parameters Target Value Gompertz Logistic

L0	 2.5	 2.51	 2.35

Lm	 9.0	 9.23	 9.11

K	 1.0	 1.29	 1.26

A.	 2.5	 3.06	 2.94

is the shapes of the first derivatives of Eq. 6.2 (Figure 6.2). The peak
of each curve of the first derivative is actually the specific growth rate for
each model. For the modified logistic model, the first derivative curve is
symmetric with respect to its inflection point M, which is not the case for
the modified Gompertz model.

The empirical mathematical models shown in Eq. 6.1 are suitable for
describing isothermal growth of microorganisms in foods. It can derive
important and sufficient information about the growth parameters (K and
A) to estimate the extent of microbial growth if the foods are held under
constant temperature conditions.
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6.2.1.2 Biologically based growth models
6.2.1.2.1 Baranyi model. The major criticisms of the empiri-

cal models are that these models are just curves that closely resemble
microbial growth curves. The empirical models lack biological meaning,
although two parameters (K and X) derived from the modified Gompertz
and logistic models, namely the lag and exponential phases, can be used
to describe two of the most important phenomena of microbial growth.

The Baranyi model is probably one of the earliest models that
attempted to describe the fundamental mechanism that drives microbial
growth. Baranyi (1995) hypothesized that the growth of microorganisms
was controlled by their physiological state, which was affected by the prior
history, and the duration of the lag phase was controlled by the formation
and accumulation of critical substances. Based on these assumptions, the
differential equation for microbial growth can be expressed as

	

-c=o(t)i.i(C)C	 Eq.6.5
dt

In Eq. 6.5, C is the actual concentration of microorganisms; u(t) is
called the adjustment function, which is a function of time and varies
between 0 and 1; and 1i(C) is the potential specific growth rate. The product
of a(t) and p(C) represents the actual specific rate (Baranyi, McClure, et al.,
1993; Baranyi and Roberts, 1994; Baranyi, Roberts, and McClure, 1993). In
Baranyi and Roberts (1994) and Baranyi et al. (1995), the definitions of a(t)
and p(C) were further clarified, and a new term, p(t), was used to represent
the product of these two terms:

q(t) (f)	 Eq.6.6

	

(t)=a(t)(C)=t ma' l+q(t)	
CmaxJ

where q(t) is related to the formation and accumulation of critical sub-
stances, which are governed by Michaelis-Menten kinetics (Barariyi et al.,
1995), and is the maximum cell concentration. With this definition,
the differential equation for microbial growth becomes

dcj = vq
dt

tmax	 1	 C	

Eq. 6.7
dC	 q	 C
dt	 1+q [

II
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Using y to denote the natural logarithm of C, and assuming that v is
a constant, Eq. 6.7 can be solved analytically, and the most recent Baranyi
model takes the form of

[	 Mm,x4(t)

	 I
ey(t)=yo +imaxA(t)—In 1+	 _ ,
	 Eq.6.8

eYma'0 

where

	

A (t) = t + 1 In (e-v'+ e° – e" 110 ) 	 Eq. 6.9

In this equation, Prnax is termed as the maximum growth rate to dif-
ferentiate it from specific growth rate K used in other equations. The value
of !.tmax is equal to 2.303 x K, the specific growth rate expressed as the log10
of the microbial count per unit time. To simplify the equation, it is further
assumed that V = Pmax, and A(t) is then actually defined by

A(t) = t+ —f--- in (ea t + e" -	 Eq. 6.10
max

The final Baranyi growth model becomes

y (t) = yo	 + In (maxt + Cho -	
) - 

in I + e'– e' ]. 
Eq. 611

In Eq. 6.11, h0 is a transformation of q at the time of inoculation, which
is calculated from

10ho	 In (__) =–ln (x0 ).	 Eq. 6.12
q0 +1

According to Baranyi and Roberts (1994), the lag phase of a growth
curve under an isothermal condition can be calculated from

= __i10 .	 Eq. 6.13
max
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o Hypothetical growth curve 	 Baranyi - Huangj008

Figure 6.3 Comparison between Baranyi and Huang models used to fit the hypo-
thetical growth curve shown in Figure 6.1.

Nonlinear regression is used to obtain the parameters included in the
Baranyi model (Eq. 6.11). Since h0 defines the initial physiological state of
the microorganism, this value may vary from curve to curve. As a result,
a mean of h 0 values of different curves (either at the same temperature or
under different temperature conditions) is calculated after the first round of
curve fitting. A second round of curve fitting is performed again to obtain

and X using the mean J, value for each curve. Figure 6.3 shows the fit-
ting of the hypothetical growth (Figure 6.1) using the Baranyi model.

6.2 .1.2 .2 Huang Model
Based on the three-phase growth phenomenon, Huang (2008) developed
a new model that includes a transition function and logistic kinetics to
directly define the lag, exponential, and stationary phases. The derivative
form of the model takes the form of

dC = kC(Cmax - C)f(X),	 Eq. 6.14
at
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where

In Eq. 6.14, the termf(X) is a transition function that defines the dura-
tion of the lag phase. This function has a unique mathematical property,
with its value ranging from 0 to 1. Within the lag phase,f(X) is zero. Outside
the lag phase,f(X) is 1.0. This function helps define the fact that no growth
should be observed within the lag phase. After the lag phase, the micro-
bial growth would follow the simple logistic rule with Cn ia x as the carrying
capacity. The constant a, which is different from a(t) in the Baranyi model,
defines the rate of transition from the lag phase to the exponential phase.
This value was fixed at 25 in Huang (2008) to ensure a smooth and rapid
transition from the lag phase to exponential phase. This differential equa-
tion can be solved analytically, and the resulting equation is

Y = Yo + Y.
	 Eq. 6.15

- ln {exp (ye)) +[exp (y ) - exp (ye)] exp [_k exp (yrnax ) B (t)]},

where

B(t= t+ -
--ln 1+exp(_a(t_))

a	 1+exp(aX)

The definition of y(t) is the same as it is in the Baranyi model. The
maximum growth rate is defined by

11 mdx = kCmax .	 Eq. 6.16

With this definition, Eq. 6.15 becomes

Y (t) Yo +
	

Eq. 6.17

- In {exp (y(, ) +[exp (yrnax) - exp (y(,)] exp [tmaxB (t).

Figure 6.3 also shows the fitting of the Figure 6.1 hypothetical growth
curve. The performance of the Huang model is almost identical to the
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stationary phases (Huang 2008).

Baranyi model in the exponential and stationary phases since both mod
els employ the competitive logistic rule for these two phases of microbial
growth. However, the Huang model clearly has a more distinctive and
mathematically identifiable lag phase than the Baranyi model.

The experimental data reported in Huang (2008) using the Huang
model suggested that the duration of a lag phase is not affected by the
initial concentration of bacteria. Under an isothermal condition, bacteria
remain dormant in the lag phase, after which they enter the exponential
phase of growth.

Due to the unique definition of the transitional function used in the
Huang (2008) model, it is possible to use the same model to fit growth
curves without the stationary phase (Figure 6.4). For this special case, the
Huang model can be reduced to

1	 1 + exp [- (t_)]	
L1. ft Iy(t)Vii +kmax t+-ln-1()

6.2.1.2.3 Huang 2004 approach
Since C. perfringens may exist as spores in RTh meats, the spores must ger-
minate and outgrow before an increase in the number of the C. pL'rfr1Jic;ls

10
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can be observed. It is assumed that not all spores germinate at the same
time and some spores may germinate faster than others. The germinated
spores begin to outgrow and actively divide until the number of cells
increases to the maximum capacity, which is also governed by the logistic
rule. The number of cells does not begin to increase during the germina-
tion and outgrowth of C. perfringens spores, which corresponds to the lag
phase of the growth process. Mathematically, the cells are either in the
state of dormancy or in the state of active dividing. According to Juneja
et al. (2001), Juneja and Marks (2003), and Huang (2004), the germination,
outgrowth, and growth of C. perfringens spores can be described by a set
of two differential equations:

dC, - - K C
dt -	 L L

Eq. 6.19
dCD dCL KC  1- CD
dt	 dt	 C

In Eq. 6.19, C L represents the concentration of C. pefringens cells in
the state of dormancy, and C0 is the concentration of cells that are actively
dividing. This equation also suggests that the dormant cells leave the state
of dormancy following the first-order kinetics. After the cells leave the
state of dormancy, they begin to actively divide. Apparently, C1 is equal to
the initial concentration of the inoculums. For C. perfringens spores, CJ) is
equal to zero at the time of inoculation. At any given time, the number of
cells recoverable from the food includes the cells in the state of dormancy
and the cells that are actively dividing. Therefore, the total concentration
of cells (C) recoverable from the food can be calculated from

C=CL +CD	 Eq. 6.20

According to Eq. 6.19, the increase in the number of actively dividing
cells is affected by both the rate at which the cells leave the state of dor-
mancy and the rate at which the cells actively divide. To solve this equation
for fitting an isothermal growth curve, it is necessary to determine both KL
and K0. To simplify the problem, it is assumed that K 1 is a fraction of K1)
(Huang, 2004), and the relationship between K 1 and K0 becomes

K 1 = aKL)	 Eq. 6.21

With Eq. 6.21, the differential growth equation can be written as
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dC
dt

Eq. 6.22

P..= +K DCL) 11.-c
dt	 dt	 t,

Within the limits of temperatures suitable for microbial growth, cx
ranges between 0 and 1; that is, 0 a !^ 1. If a = 0, all the cells would remain
in the state of dormancy and never enter the state of active division. 1 he
cell concentration would remain constant and is equal to the concentra-
tion of cells initially inoculated into the food. If a = 1, then all the initially
inoculated cells would immediately enter the state of active division. In
Huang (2004) and Juneja et al. (2006), a was fixed at 0.01 when this model
was used to fit the growth curves of C. perfringens in cooked meats. It is
necessary to mention that K 0 in Eq. 6.19 or 6.22 is equivalent to Pma,, in the
Baranyi model or Huang model, which is equal to 2.303 x K.

The duration of the lag phase of an isothermal growth process is not
explicitly expressed in Eq. 6.22. However, the duration of the lag phase
during an isothermal process can be calculated from (Huang, 2004; Juenja
and Marks, 2002):

ln(1+Jln(1±a)	
Eq. 6.23

Eq. 6.22 is an initial value problem that cannot he solved analytically,
but can be easily solved using a numerical method (Huang, 2004); this will
be discussed in more detail in Section 6.3 of this chapter. Figure 6.5 shows
the results of numerical analysis to solve Eq. 6.22 used to fit the hypotheti-
cal growth curve shown in Figure 6.1. The specific growth rate determined
from solving the different equations (Eq. 6.22) is 1.06 log10 per unit time,
and the duration of the lag phase is 2.48. Both the specific growth rate and
lag phase are almost identical to the values specified in Figure 6.1. Another
advantage of the Huang 2004 approach is that it also can be used to fit
growth curves without stationary phase (Juneja et al., 2006).

6.2.2 Secondary models and the effect of temperature
The effect of temperature on microbial growth is primarily manifested in
the changes in the growth rate and the lag phase duration as the growth
temperature varies. Generally, microorganisms would grow within the
lower limit (T,,) and the upper limit 	 of the temperature. At the
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Figure 6.5 Using the two-stage differential growth model to fit the hypothetical
growth curve shown in Figure 6.1 (Huang, 2004).

optimum temperature (T0 ), the microbial growth would exhibit the high-
est growth rate and the lowest lag phase duration. Microorganisms cannot
grow at temperatures below T,,,,, or above 	 X• At temperatures between
Tn,in and	 the growth rate would generally increase and the duration of
lag phase would decrease with temperature. As the temperature increases
above the microbial growth would generally slow down. Although
many secondary models have been developed to describe the effect of
temperature on microbial growth, the most widely used and the most
practical secondary model is probably the Ratkowsky model, which is
written as

Kmax	 = I3 (T _Tmui)u{l —exp [2 (T_Tmax )]}	 Eq. 6.24

The ö value in Eq. 6.24 can be 0.5 or 1.0. If 8 is 0.5, then Eq. 6.24 is the
traditional Ratkowsky model, more commonly known as the square-root
model (Ratkowsky et al., 1983). If ö is 1.0, then Eq. 6.24 becomes a modified
Ratkowsky model (Zwietering et at., 1991), which is a variant of the origi-
nal square-root model. The coefficients P, and 32 define the rate at which
Kmax responds to temperature.
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The lag phase duration usually changes inversely with Knax . Therefore,
the Ratkowsky model can also be used to describe the changes in X as a
function of temperature (Eq. 6.26; Juneja and Marks, 1999; Juneja et at.,
1999; Zwietering et al., 1991).

= P, (T—T)
2
 1_exp[2(T_Tmax)]}	 Eq. 6.2

Although Eq. 6.24 and Eq. 6.25 are empirical in nature, it is one of

the best models for describing the effect of temperature on the growth
of microorganisms in foods. The mW and estimated by the Ratkowsky
model can be very close to the biological limits of temperature for micro-
organisms in foods (Ratkowsky et al., 1982; Ratkowsky et al., 183).

6.2.2 Tertiary model
A tertiary model is a mode that relates both intrinsic and extrinsic con-
ditions to the growth parameters. Common intrinsic factors include pH,
fat content, water activity, and concentrations of certain ingredients that
affect the growth of microorganisms. For C. perfringens, Juneja et al. (1996)
developed a comprehensive model to describe the effect of temperature.
pH, sodium chloride, and sodium pyrophosphate on the generation tin'
and growth rate of C. perfringens in a model food svstenl.

6.3 Methods and models for growth
under dynamic conditions

Under a dynamic condition, temperature cha ne w ifh t I me, and So

the rate constant. Therefore, it is necessary to combine a primary model
with a secondary model to estimate the growth of microorganisms under
dynamic temperature conditions. The differential forms of the Baran I

model (Eq. 6.7), Huang model (Eq. 6.14), and Huang 2004 model (Eq. 6.22)
can be directly used to estimate the dynamic growth of microorganisms. The
empirical primary models, however, cannot be directly used in a dynamic
temperature condition. A transformation of the modified Gompertz and
logistic equations is needed. To transform the empirical models, a first
derivative of Eq. 6.1 must be taken, resulting in

l (L - L0 ) In	 Compi'it:
dL	 ( L—L,	 Eq. 6.26
dt	

t(L_L11),:i-
	

Logistic
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Since the rate constant changes with temperature, all differential forms
of the growth models cannot be solved directly by analytical methods,
but they can be easily solved using proper numerical methods. Although
many numerical methods can be used to solve differential equations, the
Runge-Kutta method remains a method of choice for solving differen-
tial growth equations to estimate the growth of microorganisms under
dynamic temperature conditions. This method is a standard method for
solving differential equations and is discussed in more detail in many
textbooks; however, a brief introduction of the fourth-order Runge-Kutta
method is given here (Chandra and Singh, 1995).

Denotingf(x, t) as a general differential equation for the growth model:

dx =f(x,t).	 Eq.6.27
dt

where x is L or C in Eqs. 6.7, 6.14, 6.22, or 6.26, and t is the growth time.
The Runge-Kutta method is based on the previous value and a small

increment in the independent variable to solve an initial value problem.
For growth models, the independent variable is time. To use the Runge-
Kutta method, the time domain is first divided into small segments of
equal length, with each segment equal to h = tin, where n is the number
of segments. To estimate the value of x, the Runge-Kutta method first cal-
culates four coefficients based on the previous value:

k 1 hf (t_, , x_1)

k2 =hf[tii+xii+]	

Eq. 6.28

h 1c2j

k3 =hf(t 1 +,, +

k4 =hf(t1+h,x1_1+k3)

where i is the i1h point of time (i = I to n). These four coefficients are then
used to calculate the value of xi at the t =

Xi = x 1 +(k1 +2k2 +2k3 +k4 )	 Eq. 6.29

The Runge-Kutta method can be implemented using any computing
language, even in a spreadsheet such as Microsoft Excel. In each growth



Chapter six: Cooling of cooked ready-to-eat meats and computer simulation 207

model, there is a rate constant. For the modified Gornpertz and logis-
tic model, the relative growth rate p should be used.

In a dynamic process, the temperature changes with time. Therefore,
the rate constant is an implicit function of time. Let T = g(t), then the rate
constant can be expressed as a function of time, which is

K =ax (g(t)) = P1 (g(t)_Tm, 
)2 

—exp [2 (g (t) -	 )	 Eq. 6.30

With a known initial value of microbial concentration, the dynamic
growth equation can be successfully solved (Huanr 	 I

et al., 2)().

6.4	 II cat transfc'i aiitl LIuii NiCilt

temperature history
As a product cools after cooking, the temperature of the food changes
continuously. This is an unsteady state heat transfer process. To estimate
the potential growth of C. perfringens in cooked meats during cooling, it
is necessary to have an accurate temperature history at the slowest cool-
ing point, which is usually the geometric center of the RTE meats. Several
methods can be used to obtain the temperature history at the geometric
center of a solid food. The most accurate method is to directly measure the
temperature history at the geometric center. The second method is to esti-
mate the temperature history using the starting and ending temperatures
at the geometric center. Another method is to estimate the temperature
history by computer simulation based on the physical properties of the
food and environmental conditions. Due to the limitations of this book, it
is impossible to discuss all these methods in detail, but a brief introduc-
tion to each of these methods is given in this chapter.

6.4.1 Direct measurement of temperature
With the advancement of measurement and data acquisition technolo-
gies, it is now relatively easy to measure the temperature of meats during
cooling. Many types of data-loggers are commercially available. Modern
data-loggers are sufficiently rugged, miniaturized, and can be attached
and moved with cooked meats. Table 6.2 lists some of the websites of the
manufacturers of data-loggers.

The most widely used transducers for measuring temperature are
probably thermocouples that can be directly inserted into cooked meats.
For the temperature range experienced during cooling of cooked meats,
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Table 6.2 Lists of Models and Manufacturers of Data-Loggers

Model
	 Manufacturer/Distributor

OM-DAQPRO-5300
	 Omega Engineering

(www.ornega.com )

iTCX-W
OM-CP-BRIDGE110-10
OM-CP-EVENT1 01
OM-CP-HITEMP-150
OM-CP-HITEMP-150FP
OM-CP-LEVEL 101 -SS
OM-CP-OCTfEMP
OM-CP-QLJADTEMP
OM-CP-TCTEMP1000
OM-CP-THERMOVAULT
HOBO U12 Stainless Steel Temperature (U12-015)

HOBO U12 Temp Logger w/5-in Stainless Probe
(U12-015-02)

Advantech Data Acquisition I/O Module

Model K-18808-06, K-I 8808-08
Cole-Farmer Temperature Datalogger
Model K-38010-15

MicroDAQ.com, Ltd
(www.microdaq.com )

Cole-Parmer
(www.coleparmer.com )

Type-T thermocouple probes are probably the most suitable and accurate
for measuring temperature changes. To accurately measure the tempera-
ture of cooked meats at the geometric center, it is necessary to choose a
thermocouple probe that is small but strong enough to penetrate into the
center of the meat. However, it is also important to ensure that the section
of the probe inserted into the meat is 10 to 15 times longer than the diam-
eter of the probe to prevent the conduction of the heat through the metal
sheath to the tip of the probe.

6.4.2 Estimation by start and end points of temperature

When a direct measurement of temperature is technically infeasible, one
may try to use the starting and end-point temperatures to estimate the tem-
perature history of cooked meats. To use this method, one assumes that the
temperature of the product changes exponentially with time. However,
this method is the least accurate method for thermally conductive foods
such as cooked meats, and it only works under certain physical conditions.
In general, this method is also known as the lumped-capacitance method
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when the internal resistance to heat transfer is negligible (Inperopera and
DeWitt, 1996; Singh, 1992) and is based on the balance of heat energy dur-
ing cooling. Assuming that the temperature of the product is uniformly
distributed at the start of cooling, the transfer of heat to the food is gov-
erned by (Inperopera and DeWitt, 1996; Juneja et al., 1994)

_hA(T–T)=PVC	 Eq. 6.31
dt

In Eq. 6.31, h is the surface heat transfer coefficient (W/m 2.°C), A is the

surface area (m2), L is the ambient temperature (°C), p is density (kg/ml),

V is the volume (m3), and C, is the heat capacity (J/kg°C). Denoting T0 as

the initial temperature, this equation can be integrated to produce

= exp 1- Eq. 6.32
T0–T.	 [ pVC,. J

Eq. 6.32 is more conveniently expressed as two important dimension-
less numbers in engineering—the Biot number and the Fourier number:

Bi=jiL
k	 Eq. 6.33

Fo = at -
L2

In Eq. 6.33, L is the characteristic length of an object, which is half of
the thickness of a plane, half of the radius of a long cylinder, or one-third
of the radius of a sphere, and a is the thermal diffusivity of the product
(W/m °C). The accuracy of the lump-capacitance model is highly depen-
dent on the Biot number. In general, the Biot number must be <0.1 for the
lamp-capacitance model (Inperopera and DeWitt, 1996).

The coefficient terms in Eq. 6.32 also can be used to calculate the ther-
mal time constant, t, which is equal to (pVC,)/(h,A). Therefore, the lump-
capacitance model also can be expressed as

I_exp(_±).	 Eq. 6.34
T0–T.

According to Eqs. 6.33 and 6.34, only under a special condition can
the starting and end-point temperatures be used to estimate the temper-
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ature history of cooked meats during cooling. The first condition is that
the temperature is uniform at the initiation of the cooling process. The
second condition is that the Biot number is <0.1. The third condition is that
the thermal time constant is equal to the total cooling time (t_cool). Under
these strict physical conditions, the starting and end-point temperatures
can be used to estimate the cooling history with reasonable accuracy:

T=T+(T()—T) exp[_1tjJ	
Eq. 6.35

6.4.3 Computer simulation of the cooling process

The entire history of cooking and cooling of meat products can be described
by the physical laws governing the process of heat transfer. The transient
heat transfer process during cooking and cooling of meats is basically a
heat conduction problem with convective boundary conditions. Computer
simulation can be used to solve this type of problem with relative ease.
Including the cooking (heating) process in the simulation is actually ben-
eficial to solving the heat transfer problem and obtaining a more accurate
temperature history at the geometric center of cooked meats during cool-
ing. The reason is that the transient heat transfer process during cooling
is also an initial value problem. The accuracy of a computer simulation
depends on the accurate definition of the initial conditions of a heat trans-
fer process. At the end of cooking and the starting of cooling, it is very dif-
ficult to obtain the temperature distribution within the cooked products,
and it is highly unlikely in the real world that the temperature would be
evenly distributed. By simulating the heating process together with the
cooling of cooked products, it is possible to obtain a more accurate tem-
perature history during cooling. The transient heat transfer during cook-
ing and cooling of meats can be described by a general partial differential
equation in Cartesian coordinates (Incropera and DeWitt, 1996):

- k (2T 2T
Eq. 6.36

at	 C2J
In Eq. 6.36, k is the thermal conductivity of the product (W/m °C);

p and C1, are density and heat capacity; and x, y, and z are the coordinates
of any location in the product. For most meat products, the changes in the
physical properties can be considered negligible during cooking or cool-
ing. The initial condition of this partial differential equation is T(x, y, z) =
T0(x, y, z), which is the temperature profile before cooking or cooling starts.
The boundary conditions for this equation are
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—kaT 
dnif

= h (T - T) + W,L	 Eq.	 -

Eq. 6.37 describes the convection of heat to the surface of meats a
the flux of thermal energy caused by evaporative loss. The terms w and
are rate of moisture evaporation (kg/m 2s) and latent heat (J/kg). Eq. (
can be used to describe heat transfer in a three-dimensional systeni
any geometrical shapes. Many real foods have a much simpler geometn
If heat is conducted 1 lom, one direction, the lieut I ía nsf'r eiition can be
simplified to

I--

It	 pC,, I.V

For cylindricall y shaped foods, the heat transfer ec1 uation becomes

T=_1 1i+ idT 	 Ec1.63)
dt pC (dr2 r dr

For a spherical food, the heat transfer equation becomes

Eq. 6.40
dt	 pC 1, I\ dr 2 r dr

6.5 Numerical analysis of heat transfer
With the advancement of modern computing technology, the heat transfer
equation can be routinely solved by numerical methods. The most frequently
used numerical methods for solving the unsteady state heat transfer equa-
tions are finite difference methods and finite element methods (Chandra
and Singh, 1995; Sheen and Hayakawa, 1991; Sheen et al., 1993). Huang (2007)
developed an approach to simultaneously determine the surface heat trans-
fer coefficient and thermal diffusivity using an implicit finite difference
method. This method can be directly used to simulate the process of heat-
ing and cooling of meat products. Many commercial packages for solving
heat transfer partial differential equations are also available. One example
of such products is F1exPDE (http://www.pdesolutions.com ), a finite ele-
ment package capable of solving 3-D partial differential equations.

Solving transient heat transfer equations requires accurate data
of physical properties. It is desirable to directly measure the physical
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properties of meat products. However, for most meat products, the ther-
mal diffusivity is around 1,2 - 1.4 x 10 m 2/s. The density of meats is
very close to water, and the thermal conductivity ranges between 0.4 and
0.5 W/m °C. The heat capacity is around 3.56 to 3.77 kJ/kg °C for beef meat
and 3.62 kJ/kg °C for broilers (Rahman, 1996).

6.6 Practical applications of growth models
and dynamic simulation

6.6.1 Primary and secondary models

All primary models, except the more recently developed Huang model,
have been used to describe the growth of C. perfringens in cooked meats
under temperature conditions applicable to cooling. Juneja et al. (1999)
investigated the growth of C. perfringens in a broth system (trypticase-
peptone-glucose-yeast extract) at different temperatures and developed
a secondary model to describe the exponential growth rate (K) and lag
phase duration (X) as a function of temperature.

	

K 2 = 0.044(T-10.13) {i _exp[0.419 (T_ 51 . 02)] 2	Eq. 6.41

	

= 0.020(T_10.13) {i —exp [0.190(T-51.02) 2	 Eq. 6.42

Juneja et al. (2001) studied the growth of C. perfringens in irradiated
ground beef (15% fat) and used Eq. 6.19 to solve growth curves without
the stationary phase; they subsequently developed a secondary model
for the exponential growth rate:

K 2 =0.035(T_11.18) p —exp[0 . 231(T_51) 2	Eq. 6.43

Using the same approach, Juneja and Marks (2002) continued to
investigate the growth of C. perfringens in cured chicken, and developed a
model to estimate the growth rate as a function of temperature:

K 2 =0.0358(T-12.3) {1_exp[0.201(T_51)] 2	 Eq. 6.44
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The growth differential equation (Eq. 6.19) also was solved using
the Runge-Kutta method (Huang 2004 approach) to fit the complete
growth curves (including all three phases) of C. perfringens in 93% lean

cooked ground beef (Huang 2004), and the resulting secondary equa-

tion is

	

KD = 0.003187(T _9Ji){i _exp[o.5446 (T —51 .21)]}	 Eq. 6.45

The Huang 2004 approach also was used to fit the growth curves
obtained from cooked cured pork (Juneja et al., 2006). The secondary

model for C. perfringens in cooked cured pork is

K =0.00243(T-13.5) T	
r	 Th	 (1f

	The Baranyi model was used l,,. I - L	 I

growth curves of C. perfringens in cooked boneless ham. The original
Ratkowsky square-root model was used to describe the growth of C. per-

fringens as a function of the absolute temperature, which is expressed as

,Jz0.0599(TK-283.9) 	 Eq. 6.17

Juneja et al. (2008) also used the Baranyi model to fit the growth curves
in C. perfringens in cooked uncured beef, resulting in

	

K 2 = 0.0504(T —10.15) l —exp [0.238(T - 52.98)]}	 Eq. 6.48

All the secondary models for exponential growth rate K suggested
that the minimum growth temperature for C. perfringens in cooked meats
is around 10°C to 14°C, which is the minimal temperature range for
growth of C. perfringens. All secondary models, except Eq. 6.47, suggest
that the maximum growth temperature for C. perfringens in cooked meats
is between 51°C and 53°C. The optimum growth temperature is located
between 45°C and 48°C, according to Figure 6.6, which is also agreeable
with the data reported in the literature (Craven, 1980). In general, the
growth rate of C. perfringens in cured meats is about one-third to one-half
of the growth rate found in uncured meats (Figure 6.6).
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Eq. 41, broth	 - - Eq. 43, 85% lean ground beef

- - - - Eq. 44, cured chicken	 -----Eq. 45,93% beef

Eq. 46, cooked cured pork	 ...... . Eq. 47, boneless ham

- - - - Eq. 48, 93% lean beef

Figure 6.6 The exponential growth rate (K) as a function of temperature and
described by the Ratkowski models.

6.6.2 Dynamic simulation of C. perfringens growth

6.6.2.1 F1exPDE as a simulation package
Although a few papers have been published on dynamic simulation of
growth of C. perfringens in cooked meats (e.g., Amezquita, Wang, and
Weller, 2005; Huang, 2004), computer codes used for computation were
specially developed. The computer program developed by Huang (2004)
was based on Visual Basic Professional Version 6 (Microsoft, Redmond,
WA). The program can simulate the growth of C. perfringens in cooked
meats under both dynamic and isothermal conditions, but it does not
have the capability to simulate the heat transfer process during cooking
or cooling. The computational codes developed by Amezquita et al. (2005)
were an integrated model capable of simulating the temperature history
of cooked meats and the growth of C. perfringens. A finite element method
was used by heat transfer during heating and cooling of boneless ham
(Amezquita, Wang, and Weller, 2005). The computer program was based
on a computational platform Matlab Version 6.5 (The Mathworks, Inc.,
Natick, MA), which requires special programming knowledge and is not
a user-friendly computing package.
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Figure 6.7 Simulation of C. perfringcns growth in cooked beef at 47/_C

Eq. 6.45. The raw data were taken from Huang (2004).

The F1exPDE software is a user-friendly and multi-purpose finite ele-
ment analysis package capable of simulating complex physical processes.
It can also solve ordinary differential equations (ODEs) for bacterial
growth. For this reason, this finite element computing package is used
in this chapter to demonstrate the dynamic simulation of C. perfringen

growth in cooked meats.
Figure 6.7 illustrates the simulation of C. perfringens growth in cooked

beef at 47°C using F1exPDE Version 4.2. The raw data in this figure were
taken from Huang (2004), and the growth rate was calculated from Eq. 6.45.
Figure 6.8 demonstrates the simulation of the growth of C. perfringcns in
cooked beef cooled exponentially from 51°C to 10°C in 18 h. The simula-
tion results shown in Figures 6.7 and 6.8 duplicated the results previously
published by Huang (2004), indicating the FIexPDE is suitable for numeri-
cal analysis of growth of C. perfringens in cooked meats under both Iso-
thermal and dynamic temperature conditions.

6.6.2.2 Computer simulation of C. perfringcns r'f Ii

during dynamic cooling
As mentioned previously, the accuracy of estimating the growth of
C. perfringens in cooked meats during dynamic cooling is affected by the
secondary growth models and the temperature history at the geometric
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t (h)

- Simulated o Test 1 A Test 2

Figure 6.8 Simulation of growth of C. perfringens in cooked beef with tempera-
ture changing exponentially from 51°C to 10°C in 18 h. The raw data were taken
from Huang (2004).

center of the product. If it is possible to physically measure the tempera-
ture history of the product, the data can be directly used to simulate
the growth of C. perfringens. If the temperature history cannot be physi-
cally obtained, it is possible to use a computer simulation to simulate
the temperature of cooked meats during cooling. If the temperature of
a product is not uniformly distributed at the end of cooking, it is neces-
sary to simulate the entire temperature history during both heating and
cooling. This is the approach used in this chapter to demonstrate the
application of computer simulation to estimate the growth of C. perfrin-
gens in cooked beef.

F1exPDE is used to simulate the growth of C. perfringcns in cooked
beef using physical examples taken from the literature. The objective of
computer simulation was to demonstrate the effect of cooling tempera-
ture and heat transfer coefficient during cooling on C. perfringens growth
in cooked meats. The physical example of cooking is taken from Obuz
et al. (2002). Conditions for the cooling process are taken from Amezquita,
Wang, and Weller (2005). Physical properties and conditions of the simu-
lated product are listed in Table 6.3. The product is a cylindrically shaped
beef roast (0.09 m in diameter and 0.19 m in height). The thermal properties
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Table 6.3 Physical Conditions and TLierml Frnpertii' t-ed in

Computer Simulation of C. perfringens Growth during Cooling

Parameters	 Value

Material and Shape' 	 C1indric0 beef roast

Diameter (rn)'	 0.0)

Height (rn)a	 0.10

Thermal conductivity (W/m °C)	 0.5

Thermal diffusivity (W/s2) b 	 1.3 x 10

Surface heat transfer coefficient (W/m 2 °C)

Heating,75
Cooling,	 10

Rate of evaporation (kg/mis) 	 1.8 x 1(1

Heating temperature (°C)"	 163"

Cooling ambient temperature (Ta, °C)	 1, 5, 10, IS

Heating time (h)'	 1.5

Cooling time (h)	 10

Obuz et al. (2002)
Rahman (1996)
Amezquita, Wang, and Weller (2005)

of the product are taken from Rahman (1996). It was assumed that heat
loss through moisture evaporation was negligible during cooling. During
cooking, however, it was assumed that moisture evaporated at a rate 01

1.8 x 10 kg/m 2s. Moisture evaporation was needed to compensate the

heating through latent heat, which k cictiltcd trom Anii'icju it.

and Weller (2005).

L., =-2.5x 107±2.5x10'	 [q. 6.40

Both the Baranyi model (Eq. 6.7) and Huang 2004 approach (Eq. 6.1)
were used to estimate the growth of C. perfringens during cooling. The

secondary model was based on Eq. 6.47 (Amezquita et al., 2005) for the
Baranyi model and Eq. 6.45 for the Huang 2004 approach. To use Eq. 6.47
during cooling, the upper temperature was set at 51.21'C, the same as the
highest temperature used in Eq. 6.45. These two secondary models were
chosen because they are very similar. The curves are almost identical at

temperatures below 42°C.
To validate the suitability of using F1exPDE to simulate the heat

transfer process, it was used to duplicate the heating process described
in Figure 6.2 of Obuz et al. (2002). Figure 6.9 shows the temperature his-
tories on the surface and at the geometric center of a cylindrically shaped
beef roast. The temperature histories simulated by FIexPDE are similar
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Figure 6.9 Computer simulation of the temperature profiles during cooking a
cylindrically shaped beef roast (Diameter = 0.09 m, Height = 0.19 m). TC and TS
are temperatures at the geometric center and on the surface of beef roast. TC1 and
TS1 are temperature histories at the geometric center and on the surface of beef
roast, taken from Figure 6.2 of Obuz et a]. (2002). The initial temperature is 2°C.
Other physical conditions and properties are listed in Table 6.3.

to the results reported in Figure 6.2 of Obuz et al. (2002), indicating that
F1exPDE can be used as a tool to simulate the heat transfer process dur-
ing the cooking of processed meats, considering the fact that the thermal
property data were not directly measured but taken from a reference book
(Rahman, 1996).

6.6.2.3 Scenario 1—Effect of cooling temperature on growth
of C. perfringens

In this example, F1exPDE was used to simulate the temperature histo-
ries of a cylindrically shaped beef roast during cooking and cooling. The
objective was to evaluate the effect of cooling temperature on the growth
of C. perfringens. FIexPDE was used to simulate both heating and cooling
of the beef roast. The physical conditions for heating and cooling are listed
in Table 6.3. In sum, all the beef roasts simulated using F1exPDE underwent
the same heating conditions during cooking, and the same heat transfer
coefficient (10 W/m2s) was applied during the cooling. The only difference
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t (h)

O'C	 5C	 10C - -

Figure 6.10 Simulated surface temperature histories during cooking and cooling

of beef roasts. The legends represent cooling air temperatures. The dotted hun-

zontal lines represent the upper and lower temperature limits. The heat transfer
coefficient during cooling was 10 W/m2s.

was the cooling temperature. The initial cell concentration was 2 log,,,
CFU/g. Figure 6J0 shows the simulated surface temperature histories of
beef roast during cooking and cooling. Figure 6.11 shows the tempera-
ture histories at the geometric center of the beef roasts. The temperature
histories shown in these two figures illustrate that the heating process
was indeed the same among all these simulated processes. However, the
temperature histories were significantly affected by the cooling air tem-
perature. In general, the surface temperature of the beef roasts began to
decrease immediately after cooling started and gradually equilibrated to
the cooling air temperatures (Figure 6.10). The center temperatures, how-
ever, did not begin to decrease immediately after cooling started. Instead,
the center temperatures continued to increase because of the residual heat
in the beef roasts at the initial stage of cooling. After the center tempera-
ture peaked, it also began to decrease gradually (Figure 6.12). With cooling
temperatures of 0°C and 5°C, the center temperatures passed through the
"growth zone (between Tm . and Tmin)" in 4.3 h and 5.6 h, respectively.
With cooling temperatures of 10°C and 15°C, the center temperatures of
beef roasts were above the minimum growth temperatures during the
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Figure 6.11 Simulated center temperature histories during cooking and cooling
of beef roasts. The legends represent center temperatures. The dotted horizontal
lines represent the upper and lower temperature limits. The heat transfer coef-
ficient during cooling was 10 W/m2s.

entire 10 h process of cooling. The time needed to pass through the tem-
perature range between 51°C and 27°C was approximately 1.4, 2.0, 2.3, and
2.9 h with cooling air temperatures of 0, 5, 10, and 15°C, respectively.

Figure 6.13 shows the estimated growth of C. perfringens in beef roasts
during cooling using the Huang 2004 approach. Using this method, the
estimated overall growth during the entire 10 h cooling process was
0.03, 0.05, 0.19, and 0.63 logs, corresponding to the cooling temperature
maintained at 0, 5, 10, and 15°C, respectively. With the Baranyi model
(Figure 6.14), the estimated overall growth of C. perfringens in cooked beef
roasts was 0.09, 0.19, 0.54, and 1.09 logs, corresponding to cooling at 0, 5,
10, and 15°C. The relative growth estimated by the Huang 2004 approach
and the Baranyi model was basically identical at lower cooling tempera-
tures (0°C and 5°C). At higher cooling temperatures (10°C and 15°C), the
relative growth estimated by the Baranyi model was slightly higher than
that estimated by the Huang 2004 approach. The overestimation by the
Baranyi model in the latter cases can he attributed to the incompleteness
of the secondary model (Eq. 6.47). Since the secondary model used for the
Baranyi model (Eq. 6.47) does not have a term to define the upper growth
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t (h)
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Figure 6.12 Estimation of growth of C. perfringens in cooked h'ef during coehn
using the Huang 2004 approach. Shown in the figure is the estimated growth
during a 10 h period with cooling air maintained at 0, 5, 10, and 15°C, respectiveI'.
The heat transfer coefficient during cooling was 10 W/m2s.

temperature limit, the growth rates estimated by this model were higher
than those calculated by Eq. 6.45. Although an upper temperature was
imposed during numerical analysis for the Baranyi model, the growth at
temperatures above 42°C was overestimated, which led to slightly higher

estimations than the Huang 2004 approach.

6.6.2.4 Scenario 2—Effect of heat trausJt'i coctt,cieitt on growth
during cooling

This example demonstrates the effect of reduced surface heat transfer
coefficients during cooling on the growth of C. perfringens in cooked beef.

The surface heat transfer coefficient measures the rate at which thermal
energy is transferred from a solid surface to the ambient medium during
cooling. A lower surface heat transfer coefficient suggests that the thermal
energy is removed from cooked beef roasts in a less efficient manner.
In the examples shown in the previous section, the surface heat trans-

fer coefficient was set at 10 W/m 2s. In this section, the surface heat transfer

coefficient was set at 5 W/rn 2s during cooling.



222	 Ready-to-eat foods: Microbial concerns and control measures

3.2

3.0

2.8

IL.U 2.6
C

2.4

2.2

2.0
10	 11	 12

t(h)

O'C -5'C - - - - 10CC - - 15'C

Figure 6.13 Estimation of growth of C. perfringens in cooked beef during cooling
using the Baranyi model. Shown in the figure is the estimated growth during a
10 h period with cooling air maintained at 0, 5, 10, and 15°C, respectively. The heat
transfer coefficient during cooling was 10 W/m2s.

With a reduced surface heat transfer coefficient, heat was removed
at a much slower rate than the examples shown in the previous section.
Figure 6.14 illustrates the effect of cooling temperature on the surface tem-
perature of cooked beef roasts. It is apparent that the surface tempera-
ture is above the minimum growth temperature, except for the process
with 0°C ambient temperature. At the geometric center, the time needed
to pass through the temperature range of 51°C and 27°C was 3, 3.4, 4,
and 5 h for cooling temperatures of 0, 5, 10, and 15°C, respectively, at the
reduced heat transfer coefficient (Figure 6.15). The relative growth esti-
mated by the Huang 2004 approach was 0.54, 0.97, 1.54, and 2.12 logs, as
compared to 1.18, 1.71, 2.50, and 3.15 logs estimated by the Baranyi model.
The relative growth estimated by the Baranyi model was slightly higher
than the results estimated using the Huang 2004 approach. The difference
in the estimation of relative growth is not caused by the primary model,
but the difference in the secondary models.
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Figure 6.14 Simulated surface temperature histories during cooking and cooling
of beef roasts. The legends represent cooling air temperatures. The dotted han-
zontal lines represent the upper and lower temperature limits. The heat trnLr

coefficient during cooling was 5 W/m2s.

The computer simulation shown in these two sections clearly dem-
onstrates the effects of cooling temperature and the surface heat transfer
coefficient on the growth of C. perfringens during cooling. It also demon-
strates that computer simulations can be used to estimate and evaluate
the growth of C. perfrinyt'ns in cooked meats during cooling in the event
of process deviation.

6.7 Conclusions
In general, both empirical and mechanistic models can he used to
describe the growth of C. perfringens in cooked meats under isothermal
and dynamic conditions and achieve a reasonable degree of accuracy.
Computer simulation can become a viable tool for evaluating the safety of
cooked meat products exposed to temperature abuse at the stage of indus-
trial production and commercial distribution. It suggested, however, that
any model and computer simulation methodology be experimentally vali-
dated before being used in the real-world applications.
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Figure 6.15 Simulated center temperature histories during cooking and cooling
of beef roasts. The legends represent center temperatures. The dotted horizontal
lines represent the upper and lower temperature limits. The heat transfer coef -

ficient during cooling was 5 W/m2s.
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Figure 6.16 Estimation of growth of C. perfringens in cooked beef during coolingf
using the Huang 2004 approach. Shown in the figure is the estimated growth
during a 10 h period with cooling air maintained at 0,5,10, and 15 C, respectively.
The heat transfer coefficient during cooling was 5 W/rn2s.
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Figure 6.17 Estimation of growth of C. perfringens in cooked beef during cooling
using the Baranyi model. Shown in the figure are the estimated growth during a
10 h period with cooling air maintained at 0, 5, 10, and 15°C, respectively. The heat
transfer coefficient during cooling was 5 W/m2s.
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